2.4 Vector Spaces
전공 서적 읽기/Mathematics for Machine Learning2024. 10. 12. 23:222.4 Vector Spaces

Groups집합 G와 연산 ⊗ 가 있다고 할때, G:=(G,⊗)가 group이라고 불리기 위해서는 다음 조건들이 성립되어야 한다. 1. Closure of G under ⊗ : 연산이 닫혀있어야 한다. ( 집합 G에서 두 원소를 연산했을 때 그 결과가 여전히 그 집합 G에 속해야 한다. )2. Associativity: G의 모든 원소에 대해 결합 법칙이 성립한다. 3. Neutral Element (항등원): G에는 항등원 $e \in G$가 존재하며, x에 e를 적용하면 자기자신이 나옴.4. Inverse Element (역원): G의 모든 원소 $x \in G$에 대해, 그에 상응하는 역원 $y \in G$가 존재, x⊗y=e 그리고 y⊗x= ey를 만족. group G의 임의의 x,y에 대해 x⊗..

2.3 Solving Systems of Linear Equations
전공 서적 읽기/Mathematics for Machine Learning2024. 10. 12. 17:472.3 Solving Systems of Linear Equations

선형방정식 풀기- 선형방정식을 matrix multiplication (Ax = b 형식)으로 나타낼 수 있다. Particular and General Solution 일반해 구하는 방법1. Ax = b를 만족하는 particular solution을 찾는다.2. Ax= 0 을 만족하는 모든 해를 찾는다.3. 1번 방법과 2번 방법을 혼합해 일반해를 구한다. 기본행 연산1. 두행을 교환한다.2. 행을 상수배한다.3. 서로 다른 두 행 더하기 이제 "일반해 구하는 방법"과 "기본행 연산"을 사용해 선형방정식의 일반해를 구해보자.  Example 2.6 첨가행렬을 만들어 가우스 소거법을 진행한다. (행 사다리꼴  row-echelon from 을 만든다.) 과정은 다음과 같다.  가우스 소거법을 한 행렬은..

2.2 Matrices
전공 서적 읽기/Mathematics for Machine Learning2024. 10. 12. 16:172.2 Matrices

Matrices (행렬이란?)- 자연수 $m,n \in \mathbb{N}$ 에 대해, 실수값을 갖는 (m,n) 행렬 A는 요소 $a_ij$로 구성된 mxn 순서쌍- i = 1...m, j = 1...n, m개의 행과 n개의 열로 이루어진 직사각형 배열 - (1, n)-matrices는 row라고 하고, (m,1)-matrices는 column이라고 한다.Matrix Addition and Multiplication (행렬의 덧셈과 곱셈)- 덧셈:   각 위치에 맞는 원소를 더하면 된다.  - 곱셈:    행렬 $A \in \mathbb(R)^{m \times n}$,  $B \in \mathbb(R)^{n \times k}$     에 대해 원소 $c_{ij}$ 의 곱셈 $C = AB \in \math..

image